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( ~ABSTRACT '"

An important problem in the study of actuarial risk theory is

approximating the probability of ruin within finite time based on a specified

initial reserve. n this paper we addres he similar, but mathematically

different, problem of how to approximate a desired initial reserve given a

pre-specified probability of ruin. Although the procedures have desirable

asymptotic properties such as consistency and asymptotic normality, thft are

computer-intensive and would not have been practicable before the wide spread

availability of high-speed computers. The procedures rely on simulated

realizations of a general risk process. Thus, thycan be used in many of the

t. *." ./models of risk processes that appear in the literature such as the Compound

Poisson, ARMA and Stochastic Discounting models. Examples of several models

are given to demonstrate the versatility of the procedure and to demonstrate

that the procedures are computationally feasible.
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SIGNIFICANCE AND EXPLANATION

The probability of ruin is the probability that claims against a risk-

taking enterprise exceed its initial capital or reserve plus income at some

point of time. If ruin occurs before a fixed time, such as one or ten years,

this is called the finite horizon time problem and otherwise, the infinite

horizon time problem. Even in the simplest models, ruin probabilities can be

difficult to compute. There is a vast literature on this aspect of the

problem dating back at least to the early 1900's.

An important problem in the study of actuarial risk theory is

approximating the probability of ruin within finite time based on a specified

initial reserve. In this paper we address the similar, but mathematically

different, problem of how to approximate a desired initial reserve given a

pre-specified probability of ruin. Although the procedures have desirable

asymptotic properties such as consistency and asymptotic normality, they are

computer-intensive and would not have been practicable before the wide spread

availability of high-speed computers. The procedures rely on simulated

realizations of a general risk process. Thus, they can be used in many of the

models of risk processes that appear in the literature such as the Compound

Poisson, ARKA and Stochastic Discounting models. Examples of several models

are given to demonstrate the versatility of the procedure and to demonstrate

that the procedures are computationally feasible.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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APPROXIMATION OF THE INITIAL RESERVE FOR KNOWN RUIN PROBAILITIES

Edward W. Frees

11. Introduction

Let U(t) be the net liability of a risk-accepting enterprise by time t. An

important parameter in risk theory is the probability that U(t) exceeds an initial

reserve u at some time t prior to or at T, the horizon time. This probability is

denoted by

*(u) - P( sup U(t) > u) (1.1)

O(t4T

and, when T is finite, is called the finite horizon time probability of ruin. In this

paper, we are only concerned with finite T and thus suppress the explicit dependence of

*(u) on T. The net liability U(t) is a stochastic process indexed by the time para-

meter t which may be discrete or continuous. Some of the several examples which appear in

the literature are given below.

Example 1.1. The Compound Poisson Process.

Let {N(t), 0 4 t < -) be a Poisson process with intensity p < 1. Let XIX2,...

be i.i.d. claim random variables which are independent of (N(t)). Then the number of

claims by time t is

IN(t)
k-1 Xk

a compound Poisson process. If premiums are assumed to arrive at a known steady rate,

say, P per unit time, then the net liability by time t is

N(t)
U1 (t) Lk Xk " P t

Example 1.2. ARMA model.

The introduction of the autoregressive moving average (AM4A) model in the literature

on ruin probabilities is due to Gerber (1982). Here, let I,•..,*p, 0 1'•.•, 0 q be

parameters, (c i} be i.i.d. r.v-s, and recursively define the gain during the tth

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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year by

Gt -$1 Gt-1 + G..+ t-p + Ct + clt-1 +..+ qCt-q

To complete the specification of Gt , assume that Gj = 9j, j = 0,... ,p+l, and Ck =ek

k - 0..... -q+, where {9jI and {ek) are known constants. Two assumptions, somewhat

unusual in the time-series MM literature, made by Gerber are that the noise r.v's (ri1

are bounded and have positive mean. In this model the net liability is
it.

U2 (t) j- I l

Note that in this model, the net liability is indexed by a discrete time parameter.

XxaMle 1.3. Stochastic Discounting model.

Let {Ct } and (Dtj be sequences of r.v.'s where Ct  is used for the net cash flow

during the tth time period and Dt is the discounting factor from the tth time period

to an arbitrary initial time point. Under mild conditions on the random variables, we can

define the prospective reserve at time t
Vt 1T CkDk)Vt  -D;l t(k t+

where It is the conditional expectation at time t. More formally, we could define a

nondecreasing sequence of sub sigma-fields {pTt such that Ct  and Dt  are Ft -t t=1

measurable and use 3t(*) = Z(. I Ft). In this model, the net liability is the sum of

discounted net cash flow by time t plus the prospective reserve, i.e.,

it
U3(t) - j., DjCj + vt

Development of this discrete time parameter model and some of its properties is due to

Papatriandafylou and Waters (1984). See Bdhlmann (1976) and Gerber (1976) for earlier

approaches.

Papers appearing in the literature give methods for calculating or approximating

#(u) for a specified initial reserve u. In this paper we give the theory for methods

used to determine u based on a pro-specified ruin probability, say a. In other words,

defining

(u) - O(u) - a

we wish to find the root (or zero) of the monotone function ( Cu), say 6, i.e.,
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4 (e) - 0. The problem of root finding is more difficult than simply evaluating the ruin

probability function but is also important to the risk manager. A naive approach would be

to use an iterative Newton-Raphson technique,

; n+1 8 " (8 )/*(; n n - 1,2....

where ;n  is the approximation of 8 at the nth stage and * is the derivative of

• While this procedure converges geometrically under mild assumptions on the function
* **

and starting value e1' it requires evaluation of 4 and 4 at each stage, a

computationally burdensome task. Instead, in §3 we introduce approximations of 4 and

at the nth stage, * and , n = 1,2,..., which are stochastic in nature and very
'n n

inexpensive to evaluate. This suggests the following stochastic approximation (SA)

estimator,

8n 8n - an *:(en)/':( 0) n - 1,2,... (1.2)

where {a n  is a decreasing sequence which is defined more explicitly in §3. The idea of

modifying the Newton-Raphson procedure using these approximations is due to Robbins and

Monro (1951) and has been used successfully in diverse areas such as bioassay and

electrical engineering. In §3 this approximation technique is developed more fully and

several desirable asymptotic properties are given. However, as with the deterministic

Newton-Raphson algorithm, the performance of the recursive algorithm (1.2) is heavily

dependent on the initial value 81. For this reason, in §2, we introduce the method of

quantile estimation to approximate 8. The quantile estimation method initially converges

quickly and turns out to be asymptotically equivalent to the approximation given in (1.2).

However, for a large number of iterations it is computationally burdensome. Thus, in §4 we

recommend a combination of these two procedures, using the quantile estimation procedure in

the initial stages and the computationally simpler algorithm (1.2) in the latter stages. A

criterion for stopping the algorithm (1.2) is also given which has desirable properties.

Several examples are given throughout the paper. In §5 we close with some concluding

remarks and further recommendations.

-3-

%'. 
' I o  

' ° ' ' , * o - J " * ' • - " • • • • • •

:,. ,. - .,:.... *. . , .-. :. . . .; -,..,. , ,-.-, . •/ "......



J2. Quantile Estimation

Define the random variable Z - suP04t(T U~t) and let F be the distribution

function (d.f.) associated with Z, i.e., F - 1-J. Let Zl,...,Zh be i.i.d. random

variables with d.f. F which can be thought of as N independent, computer simulated,

realizations of Z. For example, in the Compund Poisson case, let {Ni(t), 0 4 t 4 T) be

the ith realization of a Poisson process and let { k I k 1 be i.i.d. claim r.v. 's,

i = 1,...,N. Then,

Nilt)

Z - sup ()k,1 Xki-Pt) . (2.1)SOIt-T

We remark here that although we assume the availability of an infinite number of Xi's,

only a finite number are required for computer simulation, since Ni(T) < - almost surely

(a.s.), i -

Define Z(I),...,ZIN) to be the order statistics associated with Z1,...,ZN. The

usual quantile estimator of 6 that satisfies F(8) = 1-a is

N Z(N(l-a)) N(1-Q) - integer

Z N(1-a) f integer

where 1.] denotes the greatest integer part. That this approximation of 8 has

desirable properties is given in the following

Lemma 2.1.

(a) Suppose that 6 is the unique solution x of F(x-) 4 1-a 4 F(x). Then

lim eN e 6 a.s. ( 2.3)
N--

(b) Suppose further that F has density f in a neighborhood of 0, that f() > 0,

and that f is continuous at e. Then

1N (8 N-)D N(0, a(l-Ci)/f (8)) (2.4)

where +D N(0,c) indicates convergence in distribution to a mean zero normal r.v. with

variance c.

-4-
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The proof of this lemma and of other, deeper properties of quantile estimates can be

found, for example, in Serfling (1980, chapter 2). The interpretation of equation (2.3) is

that the quantile estimator ;V is correct in the limit, i.e., as the number of

simulations tends to f. Equation (2.4) provides more precise information about the rate

of convergence. (2.4) is also useful in providing interval estimates of 8, as follows.

Define a kernel estimate of f(S),

f(N =N-r1 k((Z - )/c )/c N (2.5)

where

k(u) - .75 (1-u 2 )I(-14u41) , (2.6)

I(-) is the indicator function of a set and (c n } is a sequence of positive constants

tending to zero. The kernel k(,) defined in (2.6) enjoys certain optimality properties

which are due to Epanechnikov (1969). With this choice of a kernel function we have the

following

Lems 2.2.

Choose fcn} so that cn + 0 and (n cn)-' log n + -. Assume f exists and is

uniformly continuous over the real line and assume the conditions of Le~ma 2.1 hold. Then,

supx ;fN(x) - f(x)I + 0 (2.7)

and

Pies " z y/2 (ll)/N) /fNN) 

(2.8)

+ e, + z y/2 ((1-*)/N) 2/fN(8 N)+ 1-Y

where a Y is the (1-Y)th quantile of the standard normal distributions.

The property in (2.7) is a special case of Silverman (1978, Theorem A) who proves

(2.7) for a broad class of kernel functions. (2.8) is an immediate result of (2.7) and

Lama 2.1. Other forms of interval estimates can be found, for example, in Serfling (1980,

Chapter 2.6). The form in (2.8) is suitable for comparison with interval estimates

introduced in 13 and J4.

-5-
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Example 2.1

To illustrate the calculation of the approximation 8N and its properties, we assumed

the Compound Poisson process of Example 1.1 for a model. We assumed the Poisson process

has intensity parameter p = .8, claims are mean 1 exponential r.v.'s and premiums

arrive with unit intensity (P - 1). In this particularly simple model, it is easy to

check that the regularity conditions of Lesmas 2.1 and 2.2 hold. Further, exact values of

*(u) can be calculated, c.f., Asmussen (1984). All computations were done on a VAX

11/750 owned and o-erated by the Department of Statistics at the University of Wisconsin-

Madison. The IMSL Fortran subroutines produced the random deviates.

Tables I and 2 give values of eN' fN (6N ), and the lower and upper 95% confidence

limits for N - 500 and N - 1000, respectively. The lower 95% confidence limit is

defined by

O. eN - 1.96 (a(1-0)/N) 2/fN (aN

and ,U" the upper 95% confidence limit, is defined similarly. After some trial and

error, we used bandwidths C50 0 - .40 and C1 00 0 - .20, respectively. In each table,

values are given for ruin probabilities *(8) - 1%, 5%, 10%, 40% and horizon times

T - 100, 500. These ruin probabilities were chosen to represent a range which is typically

of interest to the actuarial community. The horizon times were selected so that for the

larger T - 500, *(u) is close to the infinite horizon time case while for T - 100,

f(u) is significantly smaller. In examining Tables I and 2, the reader should recall that

in the infinite horizon time case the ruin probability has a particularly simple form in

this example, i.e., it can be shown that

lim #(u) - .8 exp(-.2u} . (2.9)
T+-

Thus, for example, if T - 500 and a - .01, using (2.9) we have .01 a .8 exp{-.2u} which

implies that the desired initial reserved level u 21.91. In this simple case, several

other approximations and bounds are available which may be used in interpreting Tables 1

and 2.

-6-
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TABLE 1

Compound Poisson Process - Quantile Estimator

N -500

T L 0N fN (0N L 6u

100 .01 17.39 .00730 16.20 18.59

.05 12.01 .01279 10.52 13.51

.10 8.94 .01773 7.46 10.42

.40 3.07 .10055 2.64 3.49

500 .01 23.27 .00559 21.71 24.83

.05 14.17 .02052 13.24 15.10

.10 10.43 .02920 9.53 11.33

.40 3.47 .06432 2.80 4.14

TABLE 2

Compound Poisson Process - Quantile Estimator

N =1000

T a 6N f N (06N ~ 6 L

100 .01 19.57 .00375 17.93 21.22

.05 13.16 .01726 12.38 13.94

.10 9.99 .01742 8.93 11.06

.40 3.36 .09621 3.04 3.68

500 .01 21.22 .00375 19.58 22.87

.05 14.57 .01392 13.60 15.54

.10 10.11 .02451 9.35 10.87

.40 3.48 .05312 2.91 4.06

-7-



Advantages of the quantile estimator defined in (2.2) are that it has desirable

asymptotic properties, Lemma 2.1 and 2.2, and that it is easily understood. However,

without using truncation devices specific to a problem, computation of 8N requires

storing ZI,...,ZN, a vector of length N. As the risk manager requires more accuracy,

N increases and this storage problem becomes computationally burdensome. To circumvent

this computation problem, an asymptotically equivalent stochastic approximation estimator

is introduced in the following section.

-8-
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13. SA Estimator

The stochastic approximation literature has branched into many directions since

initiated by Robbins and Monro (1951). Ljung and S8derstram (1983) give an elementary

introduction to SA with special emphasis on applications to electrical engineering and

automatic control. More mathematical treatments are given by Kushner and Clark (1978) and

Chen (1985). Fabian (1971) provides a nice overview of some statistical SA estimators

and a bibliography of early papers. See Nevel'son and Has'minskii (1976) for a more

theoretical treatment of SA and its relationship with optimal stochastic recursive

estimation. Although the mathematical theory of SA techniques has received much

attention over the years, there seems to be a small supply of papers on its more applied

aspects. Thus, in this paper we relegate the proofs of our results to the Appendix. In

this section we give the assumptions of a general SA estimator of the initial reserve and

its resulting properties. t4 deals with practical implementation issues of the general

procedure.

As in J2, let Z1 1 Z2 ,... be i.i.d. r.v's with d.F. F. Let f0 and 81 be

arbitrary r.v's having finite second moments and let 8 n} be the sequence of r.v.'s used

to estimate e, defined in (3.2) below. Let Fn = a(f0 ,91 ,Z., j = 1,...,n-1) be the
sigma-field generated by past events at the nth stage. Let [a n  and {c n be

sequences of positive r.v.'s such that an and cn are Fn-measurable and

lim an n 1 a.s., lim cn = 0 a.s.
n+"t n+-

For positive constants B, and B2 and some 6 ) 0, define the estimate of f(e) at

the nth stage by
* 6

fn = max(min(fnB n ),B1 ) (3.1)

where

f: - n- 1 j. k((Z-6 )/c )/c.

and k(*) is defined in (2.6). We define the general SA estimator recursively by

On+1 On an ((Zn>en ) " U)/fn-I n 1,2,... (3.2)

-9-
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process. Thus, they can be used in many of the models of risk processes

appear in the literature such as the Compound Poisson, ARMA and Stochastic
ounting models. Examples of several models are given to demonstrate the
atility of the procedure and to demonstrate that the procedures are
utationally feasible.
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and

S-1 In {c-1 E(k(CZ,..8 )c )IF ) £(6)
Bi i-1 i J-j

By (A.2), sufficient for the proof of the Lemma is to show that An 0 and B.~ + 0. From

a change of variable,

-1
c i (k((Z -6 )/c j)IF) - fle )

f cJ ' k((u-8,)/c ) f(u)du - te )

-f k(u)Cf(GOi zc) -~ ))du

+ 0

by the Bounded Convergence Theorem. This and Kronecker a Lemma show that an + 0. By

construction, in Ad) is a zero-man martingale and thus standard martingale convergence

theorems can be used to show An 0. +

Proof of Theorem 3.2:

with )n.-O 6  we re-write (3.2) to get

=n1-X - an/fn..(Z(Zn(On) - F(9)) .(A.3)

Use the martingale difference

Vn . n a,/ fn-1(I(2 n 48n) F(S )

in (A.3) to get

=n+ - n - an/fn1 {F(n)d - F(e)) - n'Ivn

We can writ* F(S)n - F(e) - (e,-e)f(i n), where Yr satisfies Ihn-6 -C1 n-l

With r -n a f(n n)/f nl ehv

Xn+1 - X1(i - n 1 r) - n'lVn (A.4)

By Theorem 3.1 and Lea A.i, r + 1. By (31) (V21F ) - n2,2/f2_ F(Bn M - V

is bounded and tends to W(-cz)f(8)2. The result of the theorem is now an easy

application of Theorem 2.2 of Fabian after satisfying

B(I(V2 ;b E)V2 IF) 0 for each e > 0

This is easily seen by applying a conditional H5ldor's inequality. 4
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Appendix

The proofs of Theorem 3.1 and 3.2 are applications of results of Ro~bbins and Siegmund

(1971) and Fabian (1968). See Frees and Ruppert (1985, Appendix) for a convenient

reference of these results. Theorem 3.3 can be proved by modifying Sielken's (1973)

arguments and will not be given here. All relationships between random variables are meant

to hold almost surely unless otherwise specified.

Proof of Theorem 3.1:

Define X,- - 8. From (3.2), after subtracting 0, squaring and taking

conditional expectations with respect to Fn, we get

F) 2 n X + 2a Xn/fn~ ((1-a) - (

+ a 2/f 2 ((IZ >8 )
an-i nt n n ) )

Define On a 2/f 2  (U lZ >8 -) a 2 1 n )) Thus,

VX2 ~ ~ ~ ( X; -2aX/ Fe F(O)) +,IIn)n n n-I n n

By (3.1), n -. Fromk Theorem 1 of Robbins and Siegmmd, we have that Li X exists

and is finite and that I a n n/f, (F(8 O) - F(O)) < -' Bly (3.1), 1 an/fn.i- . and by

A.1, (x-0)(F(x) - F(O)) > 0 for all x $A 6. Thus, we have the result. +
Prior to the proof of Theorem 3.2, we give the following preparatory

lamas A.I.

Assume Al and A2. Then, for fn defined in (3.1),

Lin fn ' ~e

Proof:

fly Theorem 3.1 and Kronecker's Lem, we have

Define f*n g A n where-n 1 ~ A2

An~~~~~ ~ ~ n-Ii 3((Z0V (k((Z -e V )I

J-1 ci -18-i
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15. Sumary and Conclusions

In contrast to other papers in the literature concerning ruin probability

calculations, in this paper the probability of ruin is a fixed, known quantity while the

initial reserve necessary to achieve this probability is the parameter of interest. Other

components, both stochastic and deterministic, of the ruin probability are considered

known. In this paper we have given the theory for procedures which are computer-intensive

and yet, which can operate in a simple computing environment. The quantile estimation

technique of 12 requires little more than a good random number generatori not even a

numerical integration routine is necessary. The stochastic approximation technique of 13

also requires a large amount of computation but eliminates the problem of storing a large

vector. Together these procedures are suitable for use in a micro-computing environment.

We have chosen to separate the risk reserve process R(t) into two components, the

initial reserve and the net liability, where

R(t) - u - U(t) * (5.1)

Although Rt) is the traditional process used in ruin probability approximations, the

separation was important because we wanted to explicitly denote the parameter of interest

u. Restating (1l.?, we have

*(u) - P( inf R(t) < 0)
Olt(T

A crucial point of our derivations is that R(t) and hence inf04(tTR(t) is a monotone

function of u. In less general models, inf0(t(TR(t) may also be a monotone function of

other parameters such as premiums, loading expenses, interest, mortality, etc. In specific

models, the techniques of this paper can be extended to estimate a typical such parameter

given a pre-specified ruin probability and initial reserve. For example, in the Compound

Poisson process case, for a fixed a and u one might wish to estimate P. This can be

considered to be a new premium principle which we intend to explore in a later paper.
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Example 4.3. Stochastic Discounting model.

The performance of the two-stage estimator in Example 1.3 is illustrated through a

version of Example 1 of Papatriandafylou and Waters (1984). Here, the risk is a 20 year

term insurance policy to a life aged 45. The unit sum insured is to be paid at the end of

the year of death and the incremental death random variable is governed by the force of

mortality

r(x) - (.0 00 0 177 )(1 1 16 8 3 )x

i.e., a special case of Gompertz's Law. Using an interest rate of 4%, the expected annual

premium with a 10% loading is P - .0085335 which is payable at the beginning of the

year. The actual annual interest increment was assumed to be a random variable independent

of mortality having a Lognormal distribution with mean 1.04 and standard deviation

.02. Table 6 illustrates the performance of the two-stage estimator for m+n - 1,000

and 10,000 observations, respectively. The estimators show good agreement in that, even

with different initial sample sizes, the confidence interval based on 10,000 observations

is a strict subset of the corresponding interval based on 1,000 observations. Further,

even though Papatriandafylou and Waters assumed a deterministic interest rate while we used

a stochastic rate, there is a nice correspondence between our Table 6 and Table 3 of

Papatriandafylou and Waters.

TABLE 6

Stochastic Discounting Model - Two-stage estimator

m n C en  fn 8 nL 0nU

500 500 .01 .8190 .155701 .7630 .8750

.05 .5999 .198470 .5036 .6961

.10 .4642 .410272 .4001 .5283

1000 9000 .01 .8364 .093327 .8144 .8584

.05 .5809 .191120 .5573 .6045

.10 .4198 .39b416 .4041 .4358
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observations are strict subsets of the corresponding intervals based on 1,000

observations. Table 5 provides a qualitative idea of how many simulations are required for

a certain degree of accuracy. In Table 5 we see that the number required decreases as a

increases and increases as d decreases. There does not seem to be a discernable pattern

in the stopped estimates, ON(d).

TABLE 4

ARNA Model - Two-Stage Estimator

m - 500

n a 0n fn anL enu
500 .01 1.6475 .043182 1.4455 1.8494

.05 1.0159 .100904 .8265 1.2052

.10 .4676 .137584 .2765 .6587

4500 .01 1.6469 .031503 1.5547 1.7392

.05 1.0012 .082585 .9241 1.0784

.10 .4761 .151321 .4182 .5340

TABLE 5

ARMA Model - Two-Stage Estimator
stopping rule (3.5)

m 500 n - 4500

a d-.5 d-.3 d-.2 d-1

.01 N(d) 1316 1644 2311 4193

eN(d) 1.6450 1.6459 1.6451 1.6468

.05 N(d) 1004 1672 2254 3482

8N(d) 1.0084 1.0053 1.0019 1.0019

.10 N(d) 952 1350 1900 3149

eN(d) .4688 .4652 .4708 .4694
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typical since the asymptotic variance for both estimators is proportional to

0(1-a)/f 2 (0), in general an increasing function of a < 1/2. In the following two

examples, we used larger simulation size* to investigate these small ruin probabilities.

TABLE 3

Compound Poisson Process - Two-Stage Estimator

m - 500 n S 500

T a n  fn 0A 0 nu

100 .01 17.41 .00713 16.18 18.63

.05 12.02 .01468 10.72 13.32

.10 8.95 .01918 7.58 10.32

.40 3.10 .10099 2.67 3.52

500 .01 23.27 .00279 20.15 26.39

.05 14.17 .01472 12.87 15.49

.10 10.42 .01844 9.00 11.85

.40 3.50 .06500 2.84 4.16

Example 4.2 ARNA model.

The performance of the two-stage estimator in Example 1.2 is illustrated in the simple

AR(M) model,

Gt = .2 Gt_1 + et

with Go - go = 0. The error random variables (ei) were assumed to be standard normal

but truncated at plus and minus 4 and then shifted to have mean 1. Thinking of the

units of time as months, we used T - 120 for a ten year time horizon. In Table 4, we see

a good agreement, for selected values of a, between the estimator at n+u - 1,000 .

observations and 5,000 observations. Further, the confidence intervals based on 5,000

-14-
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approaches, we advocate the following two-stage estimator. This compromise estimator is

also used in the examples which follow.

In the first stage, let m i.i.d. observations of Z be available for estimation and

use the quantile estimation techniques of 12 to get estimates

a 0 M and f " . . " (4.2)

The choice of a will depend on the application and computing power available. In the

following examples we used m - 500 and m - 1000. In the second stage, use the SA

estimator of 13 with the initial estimates given in (4.2). Note that in this suggested

procedure 01 and f0 are nondegenerate random variables with finite second moments. In

this application, because f 0 is a good initial estimate of f(O), we prefer to use f0

in the updating of fn. Thus, instead of using kA - m as in (4.1) to define the sequence

Ia.), use a, - 1/(m to) and
an+1 - 1(-n )/(In to) , n - 1,2....

-1 i J1

where j - c k((Z - 0 )/c ). Thus,

an+1/fn - + M fo1- 1  (4.3)

or an+I/fn 'a (n+m) - I times the reciprocal of the weighted average of the estimates

fn and fo, where the weights are the number of observations available for each

estimate. To illustrate this technique we now give several examples.

Example 4.1 Compound Poisson model.

Table 3 illustrates the performance of the two-stage estimator as in Examples 2. 1 and

1.1. Qualitatively, the estimators perform properly; the value of the estimator decreases

as the ruin probability increases and increases as the time horizon increases. Comparing

Tables 2 and 3 for large values of 0, there is little difference in the estimator and

resulting confidence intervals. Because of this corroboration between different approxi-

mation techniques, it appears that N - n+m - 1000 observations is a reasonable size for

estimation with the associated confidence intervals. However, for small values of a,

there are discrepancies in comparing estimators and confidence intervals. This result is

-13-
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J4. A Two-Stage Procedure

The asymptotic theory of §3 shows that the SA estimator e n  defined in (3.2) has

many desirable properties. However, the asymptotic properties leave a wide range of

parameters, used to define 8n, whose choice affects the finite sample properties of 6n .

In this section we discuss the choice of these parameters and give several examples.

As with deterministic Newton-Raphson algorithms, it is well known that the choice of

the initial starting value eI in SA procedures is important. Although eI does not

*appear in the limit theorems 3.1 - 3.3, it has a marked effect in finite samples. A good

choice of f0 is also important but, because of the averaging taking place in the

definition of fn (see (3.1) and below), the choice of f0  is not as crucial.

Because the asymptotic properties of §3 are valid for any sequence a n } such that

ann + 1, researchers in SA often use the simple form an - 1/n. However, in finite

samples this causes the estimate 0 to fluctuate widely in the early stages as comparedn

to larger values of n. Applied researchers, cf., Ruppert et al. (1984), suggest an

asymptotically equivalent form,

an - 1/(n + kA) (4.1)

where kA is some positive number. Some justification is given for this choice of an in

(4.1) by Dvoretaky (1956). The choice of the boundary constants 91 and B 2 in the

estimator of the density of e, see (3.1), depends on the particular problem. In our

examples we did not find the choice to be crucial and used B 1 - .0001 and B2 - 10,000.

The choice of (cn I does not appear to be crucial, either. We used a common choice,

cn - C1/3, which was also used in other studies, cf., Frees (1985).

Although asymptotically equivalent, we found that the quantile estimator of 12

initially converged more quickly than the stochastic approximation estimator of 13. This

can be justified heuristically by arguing that in updating the estimator from the Nth to

the (N+l)st stage, the quantile estimator uses information from all N+1 observations

while the SA estimator is Markovian in nature, i.e., it uses only an, fn-1, On and

Zn to update the estimator. Of course, the quantile estimator is computationally more

* tedious than the SA estimator. In order to take advantage of the strengths of both

* -12-
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Let 2d > 0 be the desired length of the confidence interval. One criterion is to

halt the experiment when the stage of the experiment reaches the stopping variable

|* N(d) - inf{n > p : d > z 2 (a(1-a)/n)/2a/f(

Because the justification for the use of N(d) is asymptotic in nature, we usually require

that the experiment run for at least p stages, where p is fixed and known. That this

criterion is desirable is provided in the following

Theorem 3.3.

Assume Al and A2. Then

lim P(eN(d)-e < d) - 1-y (3.6)
d+O

To prove this result, one would show that Theorem 3.2 is still valid when the limit

goes through random indices. Anscombe (1952) has provided a sufficient condition which he

termed uniform continuity in probability. In the SA literature this technique was first

used by Sielken (1973) for a different problem. Other methodologies to achieve this random

convergence have been used by McLeish (1976) and Frees (1985). McLeish showed convergence

through random indices by using weak functional central limit theorems. Frees showed

random convergence by using strong invariance principles. We remark that (3.6) is not all

one might hope for. A better result is P(IeN(d)-el < d) , 1-y, that is, true for all

fixed d. However, this result is not available even in the simple case considered by Chow

and Robbins. Numerical studies by Sielken (1973) and Frees (1985) indicate that (3.6) is

adequate for practical purposes. The interpretation of (3.6) is that the confidence

interval

(eN(dl-d, ON(d)+d) (3.7)

covers the parameter 8 with probability 1-a, at least asymptotically. Intervals of the

form (3.7) are known as sequential fixed-width confidence intervals and are useful in

simulation and sequential statistical experiments.

-11-
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Specific choices of the parameters in (3.2), {a (c}, 1 and fo, are discussed

in J4. To ensure that the estimator defined in (3.2) has desirable asymptotic properties,

we will use the following assumptions.

Al. The unique solution x of F(x-) I 1-a - F(x) is 6.

A2. The density of F(x), f(x), exists for all x, is bounded, f() > 0, and f

is continuous at 8.

We have the following properties whose proofs appear in the Appendix.

Theorem 3.1

Assume Al. Then,

lim 6n - a.s.

n4ft

Theorem 3.2

Assume Al and A2. Then

' n In-_8) + D N(0, a11-*l/f21el) (3.3)

and

P(e n zy/2l((l-)/n)/2/fn ' 0

(3.4)

S + zy/2 (%(l-G)/n)/2/f n + 
1
-,' n + y/2( + -n

Comparing (2.4) and (3.3) we see that e and 8 have the same asymptotic distri-U n

, bution. We remark that Al is the same assumption as part (a) of lema 2.1. Assumption A2

is slightly stronger than the assumption of part (b) of LeAma 2.1 in that A2 requires the

- existence and boundedness of f(x) for all x, not just in a neighborhood of 6. Because

of the local nature of SA estimator, Al and A2 are weaker than the assumptions of Lamma

2.2.

An important aspect of any simulation experiment is the development of a reasonable

stopping criterion or rule for halting the recursive estimation procedure. We now give

such a procedure, originally due to Chow and Robbins (1965) in the framework of sequential

estimation of the mean of a standard normal distribution, which produces a sequential fixed

width confidence interval.
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